Jacky Baltes
National Taiwan Normal University
Taipei, Taiwan
jacky.baltes@ntnu.edu.tw
06 April 2021
import PIL
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
im = PIL.Image.open( str(bogie.localFileStem) + "." + bogie.suffix )
img = np.asarray(im)
ax.set_xticks([])
ax.set_yticks([])
ax.imshow(img)
import scipy.signal as ss
import matplotlib.colors as mcolors
im = PIL.Image.open( str(bogie.localFileStem) + "." + bogie.suffix )
im = im.resize((320,240))
img = np.asarray(im)[:,:,1]
print('img', img.shape)
img1 = img.copy()
print('img1', img1.shape)
img2 = img1.copy()
img3 = img2.copy()
conv = np.array( [
[ 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
] )
print(img3.shape)
print(conv.shape)
for i in range(20):
img3 = ss.convolve2d( img3, conv, mode='same' ) # / np.sum(conv)
print(img3[0:2,0:2])
fig = plt.figure(figsize=(10,20))
ax1 = fig.add_subplot(1,3,1)
ax1.imshow(img1, cmap='gray')
ax2 = fig.add_subplot(1,3,2)
ax2.imshow(img2, cmap='gray')
ax3 = fig.add_subplot(1,3,3)
ax3.imshow(img3, cmap='gray', norm=mcolors.Normalize(0,255))
f1 = addJBFigure("f1", 0, 0, fig )
plt.close()
img (240, 320) img1 (240, 320) (240, 320) (5, 5) [[171 170] [184 181]]
import scipy.signal as ss
im = PIL.Image.open( str(bogie.localFileStem) + "." + bogie.suffix )
img = np.asarray(im)
img2 = img.copy()[:,:,2]
img3 = img2.copy()/256.0
conv = img2[ 175:186, 570:591 ]
for i in range(1):
img3 = ss.convolve2d( img3, conv, mode='same' )
fig = plt.figure(figsize=(10,20))
ax1 = fig.add_subplot(1,3,1)
ax1.imshow(img2, cmap='gray')
ax3 = fig.add_subplot(1,3,2)
ax3.imshow( conv, cmap='gray' )
print( img3[0:3,0:3] )
mx = img3.max()
print('mx', mx)
m = np.where( img3 == mx )
print('m', m)
ax2 = fig.add_subplot(1,3,3)
ax2.imshow(img3, cmap='gray')
f4 = addJBFigure( "f4", 0, 0, fig )
plt.close()
[[6490.76953125 7067.515625 7671.62109375] [6939.26953125 7540.73046875 8171.90625 ] [7249.8203125 7875.19921875 8526.078125 ]] mx 22400.26953125 m (array([303]), array([868]))
import scipy.signal as ss
image = PIL.Image.open( str( cfg['ASSETS']['bogie'].localFileStem ) + "." + cfg['ASSETS']['bogie'].suffix )
img2 = np.asarray( image.convert("L").resize((640,480) ) )
img3 = img2.copy()
sharpen = np.array( [
[ 0, 0, 0, 0, 0 ],
[ 0, 0, -1, 0, 0 ],
[ 0, -1, 5, -1, 0 ],
[ 0, 0, -1, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
] )
blur = np.array( [
[ 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 1, 1 ]
] )
print(img3.shape)
print(conv.shape)
for i in range(5):
img3 = ss.convolve2d( img3, blur, mode='same' )
img4 = img3.copy()
for i in range(3):
img4 = ss.convolve2d( img4, sharpen, mode='same' )
fig = plt.figure(figsize=(10,20))
ax1 = fig.add_subplot(1,3,1)
ax1.imshow(img2, cmap='gray')
ax2 = fig.add_subplot(1,3,2)
ax2.imshow(img3, cmap='gray')
ax3 = fig.add_subplot(1,3,3)
ax3.imshow(img4, cmap='gray')
f5 = addJBFigure("f5", 0, 0, fig )
plt.close()
(480, 640) (11, 21)
import scipy.signal as ss
image = PIL.Image.open( str( taiwan1.localFileStem ) + "." + taiwan1.suffix )
img2 = np.asarray( image.convert("L").resize((640,480) ) )
img3 = img2.copy()
kirsch1 = np.array( [
[ 0, 0, 0, 0, 0 ],
[ 0, 0, -1, 0, 1 ],
[ 0, -2, 0, 2, 0 ],
[ -1, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0 ],
] )
blur = np.ones( (5,5) )
print(img3.shape)
print(conv.shape)
#for i in range(1):
# img3 = ss.convolve2d( img3, blur, mode='same' )
img4 = ss.convolve2d( img2, kirsch1, mode='same' )
fig = plt.figure(figsize=(10,20))
ax1 = fig.add_subplot(1,2,1)
ax1.imshow(img2, cmap='gray')
ax2 = fig.add_subplot(1,2,2)
ax2.imshow(img4, cmap='gray')
f6 = addJBFigure("f6", 0, 0, fig )
plt.close()
(480, 640) (11, 21)